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SUMMARY

The lift and moment responses to penetration of sharp-edged
traveling gusts sre calculated for w5ngs h incqressible and supersonic
*-dimensional flow, for wide delta and rectangular -s in supersonic
flow, and for very narrow delta wings. By using the two-&bnensional
indicial-llft functions, some calculations of normal-acceleration response
are made for twu mass ratios.

The results of these calculations indicate that the forward speed
of the gusts has a lsrge effect on the Mft- and moment-response func-
tions. For incompressible flow, pesks exist in the early portion of the
lift response, which may be MUCh lsrger than the steady-state value.
Some peaks also occur in the lift-response functions for supersonic
speeds but are much less pronounced and exceed the steady-state value in
only a few Instances.

Calculations have also been made of the normal-acceleration response
to shsxp-edged traveling gusts and indicate that this response tends
to follow the Mft response very closely in the first few instants of
penetration; thus, the lsrge peaks which exist in the lift response at
snbsonic speeds sre duplicated in the acceleration response.

The relation between gusts traveling at supersonic speeds aad blast
waves is indicated, and the mnner in which the calculated lift and
moment responses can be used in a linearized approach to the blast-load
problem is outlined.

INTRODUCTION

Thegrowth of theldftand mcment on a wiq entering a stationery
shsrp-edged gust has been the subJect of numerous investigations since
it was first calculated for incompressible two-dimensional flow in —
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references 1 and 2. However, very little work appears to have been done
on the subject of lift and mment response to traveling s--edged gusts~
the only published results being those presented for incompressibletwo-
dimensional flow tn reference 3.

The reason for this shortage of Infmmation is probably due to the fact
that gusts (ti the Ilteral sense) trs,vellng“athigh ~peeds sae not likely
to be encountered in practice. However, the lifts and moments due to
penetration of traveling gusts can be used ‘tocalculate the loads and
motions of an airplane or missile dropped from another airplane, of an
airplane crossing the wake of or flying paqt another airplane, of a __
helicopter blade traversing the wake produced by itself and the other
blades of the rotor (a problem whdch furnished the motivation for ref. 3),
of an airplane flying through a sonic “boomfl”and of an airplane encoun-
terln.gor being overtaken by a blast wave.

In the first section of this paper the unsteady lift and moment
pursuaut to penetration of a traveling sharp-edged gust ~e calcu-
lated by linear theory for incompressibletwo-dimensional flow (by a
method different from the one employed in ref. 3), for two-dimensional
supersonic flow, for delta whgs with supersonic leading edges, for
rectangular tings in supersonic flow, and for very narrow delta -s
In .incompresslbleW compressible flow. The unsteady-lift functions
presented here may be considered to be generalized unsteady-lift functions
in the sense that they include as special cases the two previously calcu-
lated unsteady-lift functions: namely, the”“gust-penetration (I&mar )
function, which corresponds to zero gust speed, and the unsteady-llft
function due to at@ane motion (the Wagne~-@ction, first calculated
in ref. 4), which corresponds to infinite gust speed.

By using the unsteady-ldft functions calculated for two-dimensional
incompressible and supersonic compressible flow, the normal-acceleration
response is calculated in the second section of this paper for airplanes
with two different mass ratios and for various values of the speed of
gust propagation in order to indicate the effect of this speed on the
accelerations.

The relation between travellng gusts and blast waves is indicated
In the third section of this paper. The results presented herein for
supersonic speeds are thus pertinent to the penetration of blast waves,
although the results calculated by linear”theory are usable only if the -
blast waves are weak, and although for blasts the unsteady-lift functions
calculated in this manner represent only the effects of the change in flow
dlrectlon-induced”-atthe wing. The effects of the finite pressure jump;
which are of first order, sre not taken into account entirely and my
require sepsrate treatment and neither are the effects of the discon-
thuities In density and teqerature taken into account. However, these ““
effects are of higher order andj hence} negligible for a weak blast wave.
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✎✎ General relations between the lift or moment responses to shsrp-
edged gusts (traveldng or stationary) and the responses to Indicial.flap
deflectiom! ere given in the appendix. These relations ham been used
to calcuhte the unsteady-ldft and unsteady-moment functions given herein
for incompressible two-dimmsional flow and to check the results obta3ned
for sane other conditions.
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lift coefficient
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pressure coefficient
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k5(s>E)
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function for penetration of travelhg

function fcm indiciai

function for indicial

flap deflection

change of angle
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transformed

5

ordinate correspondhg (to x’, x’ - Vt’)

ordinate along flight path,
edge or apex of wing

acceleration of airfoil due

q.sc
kstatic acceleration —

%

measured rearward from leading

to traveling 8harp-edged gust

angle of attack of wing prior to gust entry, radians

8(s) unit me function or Dtiac delta function

A
vspeed ratio> v + Vg

P
hmass ratio, —
PSCCL=

P air density

$ perturbation velocity potential

CD circular frequency

l(s) unit Jump function

Subscripts:

b blast

t time

Dots indicate differentiation with respect to time.
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CAICUIATION OF UNSTFADY-IJ3T AND UNSTEAJJY-MOMENT

FaR TRAmLmG SHARP-ELGED GUSTS

FUNCTIONS

The unsteady-ld.ftand unsteady-moment functions for indicial ~le--
of-attick change and for penetration of s.E@arp-edged statlonsxy gust
have been calculated for a large variety of conditions. (See refs. 1
to 11, for Instance.) This Information is not sufficient in Itself to
calculde the unsteady-lift and Unsteady-mmknt functions for traveling
sharp-edged gusts.. Therefore~ h this section ~st of the ~ctio~ ~e
calculated directly by solving the given boundsry-value problem by use “-
of the techniques employed previously to solve the other problems.

The ‘desiredfunctions can be calcuhted if additional information
is available for the indicial-rw?onse tictim~ such as the ~c~
responses to flap deflections. This approach is outlined in the a~endix
and will be used iiithis section to calculate the desired responses for
inc~ressible two-dimensional flow.

The Boundary-Value Problem

The linearized partial differential equation for the velocity
potential of awing traveling at a constant,gpeed V in R compressible
InViscid medium is the wave equation and canbe written in coordinates
ftied in the wing surface as

(1 - #)@x,x,+ @ytyl + @zlz! = -y2v@xltl+@*It,) (1)

and

For

for the lifting case the pressure diffez?ence 4 between the upper
lower surface is given in terms of the potential on the surface by

(2)

the sharp-edged gust-penetrationprobleqi’thepr@sry boundary con-
dition is that the downwash @zt be zero on the part of the wing which

has not yet been reached by the gust front) ~d be L?XLULIto W on t~~.
part of the wing @i.ch has been passed OV=TPY the gust frontj that is,
on the wing surfaces
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(3) “

Other bmndary conditions are that the pressures on the plane of the
wing be zero (except on the wing) and that the pressure difference at
subsonic trailing edges he zero.

Fm supersonic flow the following coordinate transfomatlon often
faciL1.tatesthe solution of the problem

X=xl.vtf

Y==Y’

~=zt

\

(4)

Under this transfopation, eqpation
equation in stationary coordinates

equation (2) beccmes

J

(1) becomes the normalized wave

+ !%2 = !%t (5)

~ equation (3) becomes, for the transformed wing surface,
.

fifz=o (x>l$p)

#z=w (x<~t)

}

(6)

(7a)

for gusts traversing the wing from the leading edge to the trailing edge.
Similerl.y,
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j! fz=o (x<c+N&t) 1 .

(P)
@.=w (x>c+M.&)J

for gusts overtaking the wing.

Definitions of Unsteady-Idft and Unsteady-Moment Functions

The section lift and moment coefficients can be obtained by inte-
gration of the pressure distribution along a chord, namely,

—
.

(8)

On a wi~ of finite section the loading on a spanwise strip can be
obtained by integrating over y> nemelyt ,

w= J
b(x’ )/2

4 Q!
q -b(x’)/2 ~

. .— —.

(9)

and, hence, the lift and moment coefficients can be obtained fmm ———

CL=* 1c2(X’) ~,
Oq

%u=&JcLI&xld#
o I (lo)
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The unsteady-liR functions for penetration of traveling sherp-
. edged gusts will be normalized to their steady-state values and, hence~

be defined for two-dimensional flow as

and for three-dimensional flow as

and s is the distance traveled in semichords (for two-dimensional and
rectemgulsr w3ngs) or root semichords (for delta wings).

b.
For the unsteady-moment functions no common des~tion exists.

Therefore, unsteady-moment coefficients wilJ.be presented directly for
% unit W/V and will not be normalized with respect to the steady-state

values.

When the gust propagation speed is zero, the function k(s) reduces
to the commonly used gust-penetration function, which is usually desig-
nated by ~(s) and referred to as the ~sner function. Thus,

Wmil.srly, when the gust propagation speed is infinite, the angle of
attack over the entire wing is changed i~tant~~l.yj therefore, the
unsteady-13ft function beccmes that for indicial change of amgle of
attack, which is usually designated by kl(s) and is referred to as the
W~er function. Thus,

k(s) Vg= = kl(fd

Between these extremes, when the gust propagation
gust approaches the.wing; when it is negative but

.

speed is positive, the
less in magnitude than

—

●
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the speed of the wing, the wing overtakes the gust. When the gust speed
Is negative but greater in magnitude than th@ of the wing, the gust over-
takes the wingj that is, It approaches the wing from the rear. KU these
possibilities till be considered in this paper.

Incompressible Two-Dhnensloml Flow

For incoqressible two-dimensional floir,eqpation (1) becomes the
two-dimensional ~place eqmtion, and its direct solution for the unsteady
boundsry condition representedby equation (3) constitutes a difficult
problem. This problem has been solved in reference 3 by an indirect
approach, which consists in using the known results for the llft response
due to an infinite train of travellng sinusoidal gusts and in obtaining
the respome for sharp-edged gusts by means-of the ireil-khuwnsuper- ““ ““”
position Integral given in reference 5. However, in order to effect
this transformation, the results for sinusoMal. gusts have to be ~anded
in a series; thus, the results for the s~-edged,travel~ gust con-.
tain a certain degree of approxhatloa. ..

The same function had been obtained by an altogether different
method In connection with the present paper.before reference 3 became
available. This method is based on the a~roach outllned in the appendix
and consists in relating the lift or mment response to penetration of a
stationary or travellng sharp-edged gust to-indlcial LLfts and moments
due to flap deflection by means of superposition integrals. Its appli-
cation to the case of incompressible two-dimensional flow Is outlined
in the following paragraphs. Although this..a~ro.ach.alsocontains an
approximation, a comparison of its results with those of reference 3
should furnish an indication of the validity of the two approximations.

Equations (Al) and (A2) of the appendix.serve to express the desired
unsteady-lift function k(s) for traveling gusts in terms of the unsteady-
lift function for indicial flap deflection k8(s,~) for the wing with

the given plan fomg and Mach number; for incompressibletwo-dimensional
flow this function ka is given by equation-(A8). Thus, upon substi-
tuting this function into equation (Al), the fold.owingexpression is
obtained for traveling gusts which ~ass-mer””the wing-fr&
edge toward the trailing edge:

the leading

..—- .:
..- ..—
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where kl,C(s)

kl(s), that iS,

is the continuous pert of the

the part of kl(s) excludi~

11

indicial-lift function

the delta function for

this case. (The notation in the upper Mni.t of the integral specifies
that the upper limit is the smaller of the two quantities 2 and s/X.)
The functions T4 d TIO are (see eq. (A6))

(12)

Cos-qg - 1) J
Shllsrl.y, for gusts overtaking the wing (passing over the wing

from the trailJng edge toward the leading edge), equations (A2) and (A8)
yield

01-dT4
~ 8( S-I AIU) —
2YC

da
a g.2-13

(13)

Hence, for gusts ap&moacMng the wing or recedhg from it at a
speed below that of the wing, equations (XL) and (12) yield
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and, similarly, for gusts overtaking the wing, eqpations (1.2)and (13J
yield

—.—
-....—

.

.

(s s 21i-1)

}

(15)

In the same manner, ~essions for the unsteady-moment function.
—

%(s ) for traveling gusts can be obtained frcnnequations (Al) and (~,) _

by using the ~nt function for indicial flap deflection given in
eqyation (&l) and the function T8 defined in equation (IQ). P

-.

The ~ressions for the llft due to peutration of traveling gusts
cannot be evaluated exactly because no -licit ~1’esEIiOn fOr kl,C(s) *

is knuwn. However, the folhwlng shple function was shown in reference 5
to be a good approxtitlon to the Wagner function:

With this expression the unsbeady-lift

-I&l (16) -

functions k(s) can be evaluated
readily. The results are given In table 1 and are plotted,in figure 1
for several values of A. (In fig. 1 the abscissa Is titerrupted at”
sk5 and different scales are used in order to exhibit the behavior of
the response functions at both small and large values of

(

s.] For A = O

‘g = * ml, the functions k(s) given by equations (14) and (15), respec-
t:~l.y r:duce tathe appromte Wagner function given in equation (16)~

= 1 (Vg = 0), the e~ression fQr gusts approaching the wing

reduces to an equivalent approximation to the I@sner function.

The analytic expressions given here for k(s) can be compared
directly with those given in reference 3 only for small and very large
values of s, in which range the agreement-is very good. 131the inter- _.
mediate range of s the numerical results presented in figure 1 agree
with those estimated in reference 3 to within the width of the llnes.

—

.-

—-

.i

.—
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Therefore, in view of the entirely ddfferent nature of the approxi-
mations made in the two methods, the excellent agreement of the results
18 gratifying.

An exazuinationof figure 1(a) indicates that, as the propagation
speed of the gust increases from O to w (A decreases from 1 to O),
the conttious part of the lift-response function k(s), which represents
the circulatory contrilnztion,increases gradually for all finite values
of s from the Kbsner function to the Wagner function. At the same
t- the noncirculatory contribution increaaes also and more rapidly,
giving rise to a hump in the response function with a maxbxn at approxi-
mately the value of s which corresponds to the time it tskes the gust
to traverse one-half of the wing chord. ~iS h-, which exists neith~”
in the fissner nor the Wagner function (as usually defined), may be very
large, much larger than the steady-state value, in fact. AS the forward
speed of the gust a~roaches infinity, this hwp a~roaches the function
.
L 5(s), which represents the noncirculatory contribution associated with
z
the shgul,sr part of the Wagner function.

When the gust recedes from the wing at speeds less than that of the
~ (A> 1), both the circulatory and the noncirculatory pert of the
response tend to decrease until, when the gust travels almost as fast
as the wing, the response increases very slowly and thus tskes a very
long time to attain its steady-state value of unity.

The lift-response functions for gusts overtaking the wing, that
is, for V < -V and, hence, for negative values of A, are shown in

7figure l(b . For very lsrge gust speeds the response function again
approaches the Wagner function. For smaller speeds both the circulatory
and the noncirculatory part of the _ ~adually decrease, until, when
the gust overtakes the wing with a speed barely higher than that of the
wing, the lift increases very slowly tow~d its steady-state value. As
in.the case of gusts approaching the wing, the noncirculatory contri-
bution again leads to a h~ which may be very large.

The circulatory part of the 13ft tends to be greater for gusts over-
taking the wing than for gusts approaching the wing or rece- from it,
for the s- reason that trailing-edge flaps are more effective in pro-
ducing lift than leading-edge flaps, although the nQncirculatorv Dart

is the same (for a given value of [- “ ‘-
.-

wing the ~t response is larger at
gust being overtakenby the wing at
]V + Vgl.

The unsteady-moment functions
similar manner sre given in table 2

Al). Thus, for a gust overtaking a
W finite values of s than for a
the ssnw relative speed, nanel.y,

~(s) which were calculated in a
and sre shown In figure 2. -maybe



14 NACA TN 3956
e

seen flan equations (AIO) and (All) by the absence of terms proportional
to C(k) and kl,C(s), the moment about the quarter-chord points con- . .X ,

tains no contribution due to circulatory effects. Hence, no approxhation
of the type Indicated In eqpation (16) needs to be made for the moment
function. The behavior of the functions %(s) shown @ figure 2 is
thus similar to the variation of the hups in k(s) discussed previuuely.

_.

As the forward propagation speed of the gust approaches infhity, —

the moment function approaches the function -ar8(s), which indicates

that the I.lftrepresented by the contribution ~ 8(s) to k(s) for that

case acts at the midchord. As the forward speed of the gust decreases,
the initial center of pressure ~es forwexd until it reaches the q@er-
chord point of the wing when the forward speed of the gust is zero. As
the gust recedes from the wing at velocities O > Vg > -V, the initial
center-of-pressure location is f~d of the quarter chord, thus
resulting in positive initial pitching nunnents.

Supersonic Two-DhnensionalFlow —
●

For supersonic two-dhensional flow the functions kl(s) and %(s)

have been calculated in references 6 and 7. ~ function k(s) and *
%(s ) can be obtained In the same manner. For this purpose equations (5),
(6), and (7) are convenient,because they serve to identify the actual
boundary-value problem (in the transformed‘coordinates) wtth the boundary-
value problem of a three-dtiional wing with supers~c edges In ste@y,_,._ ~
flow parallel to the t-exls with a Mach tier of @. The potential
and pressure for this wing are then also the ones for the problem of
interest here.

The flctltiuus three-&bnenshnal tings are shown in figure 3. The
leading and trailing edges are indicated, and the leadlng edge also

....a

includes the part of the t-axis between O .-and c. The boundery con-- = ‘
-——

ditions are that in the shaded region @z = $ elsewhere on the wing .

@z= O,andahead of the wing 9=0. For “-theseboundary conditions the
pressure coefficient can be obtained readily by a superposition of sources .
or by conical-flowmethods, and these are given In table 3. The lift and
moment coefficients as a function of t- can be obtained frcuueqm-
tion ~8)j and the lift function can be reduced to k(s) by divldiag by
H —. The results for k(s) and ~(,s) ere given in tables 4 ~~- .,zTT ~
‘VM2-1
andsandare shown for M= 2 in figures 4 and 5 for
of ~. For ~ = oand~=m the function k(s)

functions kl(s) and %(s) given in reference 7, as

.—AS

several values
reduces to the ._
w be expecte?.- .- _ +

.
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As w be seen frcunfigure k(a), as the forward speed of the gusts
increases, the rate of lift growth at small values of s increases and
tends to approach infinity as the gust speed a~roaches infinity. For
luw ~mlt :p~etiMthe increase is steady, but for high gust speeds

(% -
= 2) the lift increases to the Inltlal value of the kl

bction and dips & before it increases again toward the steady-state
value of unity. The lerge peaks associated with the noncticulatory con-
tribution in Incompressible (and presumably stisonic) flow sre not present
for supersonic flow.

For gusts receding from the wing the gust-response function increases
steadily, and the rate of increase decreases with gust speed until} for
gusts receding at almost the speed of the wing, the function increases
very slowly.

Similarly, as - be seen frcm figure h(b), for gusts overtskimg
the wing, the ldft response increases ldnearl.y(at a rate which increases
with the speed of the gust) until it reaches a value intermediate between
the initial value of the Wagner function and the steady-state value of
unity, and then continues increasing at a much lower rate.

Similar observations nq be made for the moment functions shown in
fQure 5.

Delta Wings With Supersonic Ieading Edges

For delta wings with supersonic leading ~es, that 1s, for delta

wings with a aspect ratio A lsrger than bl~$ - 1 or a slope m
of,the leading edge (tangent of the apex half-angle) larger than

l/~M2 - 1, the functions kl(s) and %(s) have been given in refer-

e~ces 8 and 9. Again, the f&ctions k(s) and %(s) can be obtained
in a similar manner.

The detailed solution of this three--nsional-f low problem is nnzch
more dll?ficult than that of the two-dimensional-flowproblem discussed
in the preceding section. However, if attention is confined to the chord-
wise load-distribution fhction 2(x) and the total ldft and pitching
moment, the problem can be reduced to a two--nsional one similar to
the problem considered In the preceding section. !Ihisreduction can be
effected (see ref. 8) by considering the Integral of @ over the local
span, that is,
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for which, in the coordinates x,z,tz the partial differential equation
is equation (5), with the y derivatives deleted. The loading func-
tion z(x) is then given by the equivalent of eqyation (6)3 IWW.Y~

and the
for the

Thus,

or

boundary condition is the egpivalent of eq-ti~ (7), namd.yj
fictitious wing surface in transformed coordinates,

J’
m(x++it)

@z ❑ @z w
-m(x+Mt)

(JZ=o

-. —.

(x> h&)

a==0 (x<c+Mgt)

Oz = 2WM(X + Mt) (x>c+Mgt)

depending on whether ~ is greater $hgn o,r_lessthan -M.

The geometric characteristicsof the fictitious wing are again
those indicated in figure 3 (where c now refers to the root chord) and
the boundary condition on # Is sgaln specif~ed on the shaded part of
the wing and is zero elsewhere; but it is not constant as it was before-.
The solution of the problem cannot, therefore, be obtained readily by
conical-flow methods; but the
used conveniently, that is,

O(x,o,t) = -+

c

—

*

. . ...—.
.*

.—-=

--

source-superpositionmethod
—

can still be -.. —-

JJ
Mach K

t -tl)2- (X-X1)2

.—.
.
—

forecone . ..

The resulting expressions for the loading functionary given in
table 3, and the cclrrespbndingv~ues of k~. ~d- Cm(s) ~e gfven in ‘“ “~-~
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tables 4 and 5.
values of ~.

and are shown in figures 6
Again, the function

tions kl(s)- and k2(s) (see ref.

~ = O, respectively. The behavior
be similar to that of the functions
(See fl.gs.4 and 5.)

The pressure
of the Mach cones
a two-dlmensional
Mach cones cannot

k(s)

17

and7 for M= 2 and several
reduces to the known func-

9, for hstance) for ~ = m and
of these functions may be seen to
for supersonic two-dimensional flow.

In Supersonic

distribution h the region of a
emanating frcmlthe wing tips is

Flow

rectangular wing ahead
identical to that of

wing. Although the pressure distribution wlthln the
be calculated readily, the chordwise loading and the

total lift and moment contributed by t~se regions can be det&rmlned
readily by a technique almilar to that used In the preceding section
provided the Mach cone emanating frcm one wing tip does not cross the

oppoaite aide edge, that is, provided A Is larger than l/(-.
For such wings which will be referred to as wide rectaagulsr wingsj the
functions kl(s] and %(a) have been given in reference 10 and*
elsewhere.

In reference 10 the unsteady-lift coefficient for a wide rectangular*
wing with a downwash distribution of the form

@&’,Y’,o,t’) = Vf(x’~(t’-t~)

(where ~ represents the unit Jump function and t~ may depend on x’)
is expressed as

c~(t’) = CL,0(t’) - ~~(t’) (17)

where CL,0(t‘) ia the lndicial-Mft coefficient for a two-dimensional

wing with the same downwaah conditIon.

The correction term which mud be added to the two-dimensional value
can be expreaaed as en integral of a chordwise-loading function Y(XI,tr)
and is, for a wing of unit chord,

-—

1
&L(t’) = 4

J
y(x’,t’)dx’ (188)

A(M2 - 1) O

.

An analogous correction for,the moment coefficient la

-

. —
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+(t’) = 4
J

1 .
y(x’,t’)x’ ax’

A(@ - 1) O

(m))

where

y(x’,t’) =

~x’qE~”41f(’)d’ .(’’! ..””

where, in turn, the indicial-responsefunction %(T) is given by

al(7) = O (7<0)

=1 ( )osTsml

ml
a—

(
ml STSn

2 4

= 0 (.: ~)

M+lnl=y

Now, for a wide rect~ ~ penetrating a traveling shsrp-
edged gust of intensity W and speed Vg}

al~l (~<-M)to(g) ==

(20)

(21a)

(21b)

.

—

—

.

.

●
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where

19

Substitution of equations

y(x’,t)

or, changing the variable

gives

.3% ,y(x’,t) ~ --p -

-w Me
y(x’,t) = ~=(x’

The geometric

equation (19) yields

.

(20)

M&=M+~

and (21a) into

(22)

%x’

-1- w) JM(%W1)‘l(’) “ (%<-M)(=)
o ().+2 .-

characteristics of this problem me indicated in. . . .
figure 8. The integrations required in eqpations (22) and (23) take

place along lines Mt = Cons&t frcm f = x’ (where T = O) to g = O

(

I
where T = ~

Mt ‘r T=’my )
depending on whether ~ ? -M . me

resulting expressions for 7 are given in table 6. These ~ress ions
have been integrated to obtain the correction for the Uft and moment
coefficients. (See eqs. (I-8 ).) The results ere given in tables 4 and 5.
The unsteady-lift function k(s), which is obtained by normalizing the
corrected value of the two-dimensional unsteady-lift function (see.
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eq. (17)), is shown in figures 9 to 12 for m = 2 and sev&ral values
of ~ and A. Simil.srly,theunsteady-moment coefficients re given....

in figures 13 to 16 for several v~ues of ~ and A. Again, the
unsteady-lift function k(s) reduces to the known functions kl(s) and
k2(s) for,this case, which are given in.refer?nce 10.

The behavior of the lift-response and _nt-response functions is
similar to that for supersonic two-dimensional flow, exceut for the .
slight differences”ass~ciated
the initial value of the kl
state value.

Very

with the’fact~that for finite aspect ratios
function can be greater than the steady-

Narrow Delta Wi~s

For very nsrrow delta wings and bodies, derivatives with respect to
~t or x tend to be small compsred with me others in the equations of
motion (eqs. (1) and (5)). For incompressibleflow, equation (1) there-
fore becomes the two-dimensional Iaplace equation in the Y’Z’-plane and
can be solved readily for both steady and ur@tedy boundary conditions.
If only the chordwise-loadingfunction and the total lift and mcment
are of interest, the solution of the b~—-value-problem can be
avoided, because the chordwise loading can lEobtdiied”di2ectly f%m
apparent-mass considerations. T?XLSapproach-was used in reference.~ 1
to calculate the functions kl(s) and ~(s).

For compressible flow, equation (5) becomes the two-dimensional-
wave equation with boundary conditions in the case of interest here which
can be construed aa pertaining to a three-~nsional wing in steady
supersonic flow, as was done for the functions kl(s) and k2(S) in
reference 12.

—

fl

.-
.-

.-

..—

.=

._—
=

:
. . -—-

.m

.2.-.
—
.

..

——.—
n

--

.
-.

—
.b-
.-

.. C:
:=

-.=
-.—-—.~.

.-
—
_-,..-.
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.
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Incompressible flow.- The ~ression for the chordwise loading glyep . ,:
im reference 11 is -d

2(X’) = (~+vwip!wx’’tll ..:”::
where b(x)/2 is} for a delta wing, equal to mx’, m being the tangent
of the semiapex angle of the wing. For awing flying at speed V and ..... :
penetrating a traveling sharp-edged gust a~roaching from the leading ““~y
edge with speed Vg, the effective sinking speed h is given by .=

() (24) .:il(x’,t’)=w~ t’-:
e
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where Ve-V+V and~
before. EJ!hetotaf indicial
chord point of the wing ere

21

designates the unit ilwp ~ctionj as
IMt end moment about the two-thirds root-
thus ..

When A is zero or infinite, the following two limiting cases are
obtained:

= 1 (s > 2)

where 5(s) is the Dirac delta function. These results are identical
with the functions kl(8) end k2(s) presented h reference 11 for
this case.

Similarly, for gusts overtaking the wing,

Thus, the lift snd

h(x’,t’) =
“ t’++)

mment functions become
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where ~ Is again referred to the two-thirds root-chord point. For
CL(m)

n--
.

the special.case f~r which Vg is infinite, this function k(s) reduces —

to the function kl(s) given in reference 11. When Vg = -V (the case

of a gust travellng Just behind the trailing edge), k(s) = O; however, ~
if Vg = -Mm (VO + e) (the case of a gwt travelimg at the same velocity

“e+o
as the airfoil and with its leading edge just ahead of the trailing edge

—
.-

of the wing), then

The functions k(s)
from either direction me
of A.

k(s) = 1(S) —

and ~(s) for ~ts approaching the wing
shown in figures 17 and 18 for several values -

—

The behavior of the response functlons”is similsr to that of the
———

functions for incompressibletwo-dhensional flow. Again, large peaks . ...~.~~
associated with the noncircukkory contribution to the lift exist at

——

low values of s for gusts approaching the:wing or overtaking the -j

and, again, the value of the response function at all finite values of . .&<
s tends to be much larger for gusts overtaking the wing than for gusts ~
approaching it or receding from it at the same relative speed.

*“

Conrpresslble flow.- For compressible fl~ the lift and moment :
responses can be obtained by the method used In reference 12. The
resulting expressions are given In tables 7 and 8. They involve a func-
tion f(~) which is defined and tabulated in reference 8. ~smuch as
no simple .ex@icit expressions f~ f(~) are available, the integrations
required to obtain the functions of interest.herewmild have to be per-
formed numerically; NO such calculations have been made. However, the
unsteady-lift functions given here can be sh&n to reduce to the func-
tions kl(s) and .%(s) given in reference 12...

. —
.- ——

c.-.

--.—-
_ .,.-

. —

NORMAL-ACCELERATION FLESFONSECIFANAIRPH

TO TRAVELJNG GUSTS -...——_-

T& purpose of ttis section iS to ~dicate the effect that CJWWS j
in the response function which result from chsnges i.nthe gust speed . .-.S
may have on the acceleration response of an airplane to shsrp-edged gusts. ..... _l~
For this purpose the airplane will be assm”d to be.free to move In only
one degree of freedom, vertical translation:’”:Ignoring the pitching

.—

degree of Zreedom @lies”that not only pitching motions aad their effect .:
on the normal acceleration but also the unsteady moment which results ““ “-— “-+:
fro~ the factitkt. the gust strikes the wi~and tall at different __ _.:_=

.
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instants of time are disregarded. Nonetheless, this assumption 18 made
very often in gust-load 8tUdie8j ~icularly in primarily qualitative
8tUdie8J and will be used here for that purpose. For airplanes with a
high mass ratio, with a relatively high pttchhg moment of inertia, or
with a well-demped short-period mode, or for llterally sharp-edged gusts
(such as those represented by a blast), this approach is even capable of
yleldlng useful ~titat Ive Information.

traveling-gust penetration and plunging, respectively, the equation of
motion for this case can be mitten in dlmeneionless form es

s
K(S) =% = k(s) - ~

J
kl(s-sl)K(sl)dsl

0 0

where K(s) Is an alleviation factor referred to the reference “static”
acceleration

which is the InltIal acceleration response if unsteady-lift effects are
Ignored, and y is a mass paremeter defined by

An examination of equation (~) indicates that for Wge values of
the mass parmeter the alleviation factor K is Sub8t811tidl-Yequal to
the lift-response function k(8). Thus, any changes In k(s) are then
directly reflected in similar changes in the normal-acceleration response.

For smaller values of the mass paremeter the integral equation has
to be solved for K(8) by using operational methods (if k(8) and
kl(8) ere, or csn approximately be, expressed by sImple functions), by
iteration, or by numerical methods. Numerical calculations have been
made for v = 50 and 200 by using the two-dimensional unsteady-lift
functions for incompressible and supersonic flow. The value of v = 50
represents a transport airplane flying at low or moderately high alt1-

—

tudes; the other value represents a fighter or boniberairplane at low
altitudes, or the tramwrt a~- at ~ ~tlt*s ● me ~8~ts ~e _
shown in figures 19 to 22. ..-
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In using response functions for two-dimajsional.flow to represent ..
those for an actual tapered wing, basically two approx-tlons are made,
inasmuch as both the steady-state lift and the manner Inwhlch it is
approached as a function of time differ for &wing of finite end inflni~e
span. The differences in steady-state values canbe removedby using the
unsteady-lift functions k(s) which are normalized with the steady-state
liftj the differences in the manner in which this value Is approached can
be minimized by referring s to a more representative chord than the
root chord, such as the mean aerodynamic chord. If s is redefined in
this manner for the purpose of using the two-dimensional response func-
tion to better advantage, the mass paremeter p must also be referred
to that chord rather thanto c. The values of v and s used h
figures 19 to 22 should, therefore, be considered to be defined in this
modified manner.

Ccmrparlsonof-the results presented in these figures with those foi
the Uneteady-lifi functions themselves Indicates that, as expected, the–
acceleration response follows the lift responge not only for large values
of u (around 2(X3)but also during the first,-fewin@ants of travel (in
which time the peak in the lift response due,to nonclrculatory flow
effects occurs in subsonic flow) for smaller mass ratios (around 50)j
however, therestter the acceleration response does depend on the mass
parsmeter. These statements are true for gusts both approaching the
wing and overtaking it. For supersonic speeti calculations have been
made only for ama&is ratio w of 50, because”even for this value the
acceleration respoqses follow substantially the lift-response character-
istics; they canbe expected to do so to an gven greater extent for
lsrger values of the mass ratio. The conclusion can, therefore, be drawn
from these curves that the acceleration response depends to a lsrge ‘“
extent on the magnitude and direction of the gust speed.

h the preceding p=agraphs only sharp-edged gusts have been con-
sidered. For traveling gusts, the intensity of which is a function of
the distance behind the wave front d, the acceleration response can be
determinedly superposition from the sharp-edged gust response obtained-”
by solving equation (25). lksmuch as

the gust intensity can also be expressed as a function of s, nsmelv,
w(s)= In
K(s), the
as

.
-—..

“y---

— .-—
——

-i

*
..—-

—
.

..:

—
A..-

—
.

terms of this function ‘%d the acceleration-respo~e func~~on ,.;
normal acceleration for a time-dependent gust cw~ be written .,~..----~

.

. .
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25

(26)

.

The convolution process indicated in thts eqyation msy tend to
obscure some of the minor effects resulting from changes in gust speed,
but the ma~or conclusions reached concerning the effect of such chamges
on the acceleration response to sharp-edged gusts exe likely to be vaMd
for the acceleration response to other types of gusts as well.

RELATION BETWEEN ELAST WAVES AND TRAWLING GUSTS

When a blast wave strikes a stationary obJect, the Instantaneous
pressures on the surface of.the ob~ect =e proportional to the peak over-
pressure of the blast, the constant of proportionality being a reflec-
tion factor which depends on the geometric characteristics of the obJect
sndl for strong shocks, on the shock strength as well. (See ref. 13.)
This overpressure is due not only to the fact that the object is i.nitialJ.y
~sed to the sW* fit -O to the fact that it arrests the propaga-
tion of that shock or deflects it. The manner h which the problem of
calculs.tingthis overpressure (the diffraction problem) can be solved
is indicated in reference 14, where the results of several.such caJ.cu-
lations tie also given.

When the ob~ect is a wing fl.ylnghltia.lly through still air, its. ‘
response to the overpressure of the shock is similar, but in addition to
this effect it also responds to the velocity behind the shock. The
effects of overpressure and velocity overla..and csnnot be divorced from
each other readily. For instance, for a weak shock, which propagates
stistanti&lly at the speed of sound, the overpressure ~ and the

Vdocity Wb sre related by the limiting
of the Rsmkine-Hugoniot equation, namely,

~ = pawb

If this shock strikes a plske parallel to

form, for smali werpressures,

its front, the @itial pres-
sure on its ~osed surface is ~s whether the plate is stationary
or moving parallel to the shock front, and the initial pressure coeffi-
cient for the surface is .—

4=?%
q MT ... .
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However, this initial pressure coefficient is also precisely the one
associated with instanteaeous entry into a vertical gust of intensity
Wb; thus, consideration of either the overpressure Or velocity yie~s

a result for the initial response which includes the effects of the other
in tlds case. On the other hand, after some time has elapsed, the over-
pressure equalizes around the plate and, hence, produces no fiessure
clifference directly, although in subsonic flow It can still influence
the lift through the yorticity shed while it was acting; thus, except
for this induction effect in subsonic flow, the pressure difference is
then due to the velocity effect alone.

.-

.-
+

—
—
.

.=

In this section ODJY the effects of the change in relative velocity
occasioned by entry into a weak blast are considered. In view of the

—

preceding argument, these effects include at least some of the effects
.

of the overpressure associated with the given blast. Inasmuch as atten- —

tion is confined to week blasts, the effects of change in temperature
(and hence speed of sound) and density acro@s the blast wave, which pro- D
duce only second-order effects on the lift of the wing) will be disregarded. .

The relation between a blast wave and a traveling gust is indicated -..-<
in the following sketches: ., -?-

Blast wave .- !&aveling gust

The
ation of
Thus,

equivalent vertical gust intensity is determined by a consider-
the conditions prior to and subsequent to gust and blast entry.

.-

.

.
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The other (horizontal) component of the blast velocity is parallel to
. the chord and is equivalent to a horizontal.gust which, within the scope

of a linearized treatment, produces the same lift as a vertical gust of
intensity equal to ~ times the intenei~ of the horizontal gust.

Thus, if this effect Is taken into account,

w =wb(sti e + q cos e) (2’7)

For blasts striking frcunalmost straight ahead or behind, the second term
msy be more lqortant than the ftist.

The equivalent speed of the traveling gust is determined by a con-
sideration of the time required for the gust and the blast wave to trav-
erse a given horizontal distance. Thus, the time required for the blast
wave to pass over a given distance h along the flight path is
Ax cos e/Vb, and the time for the gust is Ax/Va. Therefore, the equiva-

lent gust ~peed Is

Vg =

inasmuch as for a weak blast wave,

sound a. The equivalent value of
therefore, always be supersonic.

With the equivalent rehtions

0

‘b
cos e

1

(28]

a
cos e

Vb Is approximately the speed of

‘8 associated with a blast must,

given by equations (~) and (28), the
gust-response functions for supersonic values of Vg and accelerati6n-

response calculations presented here can thus be used for the blast-
penetration problem. The veriation of the blast velocity ~ behind

..-

the blast front can be taken into account by eqressing this variation
as a function of s by using the relation .

and then by usIng equation (26) to calculate the acceleration response.

.
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DISCUSSION
.

The lift and moment responses have beericalculated herein for two-
dimensional wi~s @ incompressible and supersonic flow, for tide delta _ _~

.

and rectamguhr wings in supersonicflow, aiidfor vkry nekrow delta
wings. The reason for selectlng these cases was that for them the tic- -–- “.
tions of interest could be readily calculated. For three-dimensional -_ _
Incompressible flow end for tmxlimensional compressible flow the f’unc- Q
tions kl and ~ have been calculated Inprevious investIgatlons, but .

the uthds used do not lend themselves to the calculation of the more
d

general response functions of interest here; also no simple ~thods are
available “forcalculating the desired resp@es of wings with subsonic... “~;-~”-~
leading edges in supersonic flow. -. --

The results of calculations for very nerrow delta wings have been
included despite the fact that the results Qf linear theary for these
wings are of llmlted practLcal utility, inammch as for even relatively
low angles of attack the wake of these wings,tends to curl up and intro-
duce deviations from linearity in force and moment responses. The
reasons for including these results is that they are obtained very easily
for incompressible--”flowand serve as the only Indication of aspect-ratio
effects in subsonic flow available at present. In other words, their
significance stems pr-ily frcm the fact that these wings serve as a..
theoretical limiting case. However, no nw-rlcal calculations have been
made for these wings in compressible flow because such calculations
would have requtied more effort than the regults are considered to
warrant.

—
.

,. -.

-.,=
-.

.J

r’ —

—.——---
—

~ this paper only entry into traveling gusts and blasts is con- -.u
sidered. However, the results also apply t~,.theproblem”of exit from - ._
traveling gusts and blasts, inasmuch as exil,from a gust of given
intensity can be considered to represent an entry into a gust of equal.

.=

and ~osite hteuf~j thus, this problem need not be treated explicit~, ‘--“-
and all stlhements made in this paper conceiving responses due to entry
into gusts and blasts are eqmlly valid for exit from gusts and blasts,. ...–..=

A full discussion of the implications and limitations of linear
theory sre beyond the scope of this paper. Tt should be~ointed”out ttit,
in order for the results of this theory to be valid, all disturbances
must be small; therefore, the gust intensity and the magnitude of the
resultlng motion must not ,betoo large. For–most problems other than
those related to.blast loads, these conditions are likely to be satisfied,
except possibly for ve~- rierrowdelta wings~””On the other hand, ftir
blasts they may not be satisfied unless the airplane is fatily far awsy
from the center of the blast. The limitlng distance depends on the magni-
tude of the bkstj the orientation relative to the airplane (blasts from
almost directly ahead of or behind the alrpl.eheresult in low Induced

-.—— —
.—

*
-.— —.—

.*

—. .

.-
- - .- .r -

.K
.——
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angles of attack); the speed of the airplane (the higher the speed the
smaller the engleyo2-attack change is caused by a given blast velocity;
but for high subsonic, transonic, and high supersonic speeds, only smsdl
angles of attack can generaldy be tolerated tithln llnear theory)j d
the plan form (the aerodynamic forces on low-aspect-ratio wings tend to
be lJnesr only in a malJ angle-of-attack range). Nonetheless, despite
these limitations and despite the possible presence of the aforementioned
pressure effects which have been ignored herein, the results presented
herelm which pertain to supersonic speeds of gust propagation shuuld
furnish a first step in the theoretical analysis of the blast-load
problem.

CONCLUDING IWUiRK3

The llft and ~nt responses to penetration of sharp-edged traveling
gusts have been calculated for wings in incompressible and supersonic
two-dimensional flow, for wide delta and rectangdar wings in supersonic
flow, and for very narrow delta wings. ~ using the two-dimensional
indiclal-lift functions, some calculations of normal-acceleration response
have been made for two mass ratios.

The results of these calculations Indicate that the propagation
speed of the gusts has a large effect on the lift- and moment-response
functions. For ticcmpressible flow (and presumably for compressible
subsonic flow as well), peaks exist in the esrly portion of the lift
response which may be much tiger than the steady-state value. Smne
peaks also occur in the lift-response functions for supersonic speeds
but are much less pronounced and exceed the steady-state velue in only
a few instances.

The normal-acceleration responses tend to follow the lift response
very closely in the first few instants of penetration provided the mass
of the airplsne is not impractic~ small; thus, the large peaks which
exist in the lift response at subsonic speeds are duplicated in the
acceleration response. After the first few instants the acceleration
response depnds to a relatively larger extent on tie nmss of the air-
plane.

The relation between gusts travelJng at supersonic speeds and blast
waves has been indicated, and the manner in which the calculated lift and
moment responses can be used in a linearized approach to the blast-load
problem has been outltied.

Iangley Aeronautical Laboratory,
National Advisory Conunitteefor Aeronautics,

Iamgley Field, Va., January 16, 1957.
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APPENDIX
.

REIATION EETWEEN UNSTEADY-LIFT FUNCTIONS FOR GUST PENETRATION --

AND FOR INDICIAL FIAP DEFLECTION

As pointed out in the text of this paper, the unsteady-Mft or j
unstesdy-manent functions for gust penetrating cannot, in general, be
obtained directly frm the Lift end

...—=
mcunentfunctions for iniicial angle- ..:

of-attack change. However, they c= be obtained from the unsteady-~ft
end unsteedy-mcment functions for hdicial flap deflection. This approach ... ,..=
is similar to the one used by KUssner in reference 1 for station- gusts.
However, in reference 1 consideration is given initially to sinusoidal
gusts and flap deflecticms; wheresa here the.desired results are estab-.. j
lished by working with indicial responses directly.

As maybe seen from equtim (3), the boundary Condition for gust
penetration is, at any instant t’, the same ea that for awing with a
lesding-edge flap which extends to the point-x’ = (V+ Vg)t’. Conse-

quently, if the lift or moment due to indicial flap deflection is known,
the lift due to gust penetration can be obteQd by superposition. Thus,
if the nomnalizd unsteady-lift function for indicial deflection of a

trailiruq-eibqe flap extending rearward from x.!= g ~ is designated by

~(s,~), the unsteady-lift function for gust penetration csnbe obte$ned

by considering seets of the wing to deflect indicially in a progres-
sive fashion; thus,

k(s) - [~(s,o) - ~(s,A~)] + [~(s&,A~) - ~(s-h,a)] + . . .

.-
. —

.

d—

---

-- ..—_—
.—. .— —

.—

-—

[
= + -&l#s, O) + k@As,AE) + k@-=,@ + . . .]

with ..– . . — -:

—
.-

.—.

.

.
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Hence, in the

(Al)

This relation pertains to stationsxy gusts (X = 1) as well as for
all gusts traversing the wing from the leading edge to the trailing edge
(A > -1)● For gusts trasmrsing the wing from the trailing edge to the
leading edge (X < -1), the following relation may be obtained in the
seinemanner:

J‘(’%)
k(s) =

o [ 1
& %(’-N U,24) ig=u‘u

(A’)
-.

Equations (Al) and (A2) represent the desired relations between the
unsteedy-~ft functions for gust penetration and itiicial flap deflection.
Identical relations exist between the unsteedy-mment functions.

The unsteady lift (or manent) due to an indicial flap defletting,
as used in the preceding rel.atims, is the lift on a wing which has a
flap deflected by a unit angle, is initially at rest, is accelerated
instantaneously to speed V at time t‘ = 0, ad then continues to fly
at that speed with zero angle of attack. This lift is related to but
not necessarily identical to the lift on a wing initially flying at
speed V end experiencing an abrupt flap deflection at time t‘ = 0,
because such a deflection involves transient effects, namely, those due
to an impu~ive rate of rotation (a condition which implies an impulsive
vertical velocity proportional to the distsnce from the axis of rotation),
which exe spurious for the present purpose. —

Similarly, the lift for a flap which is abruptly given a constant
rate of vertical displacement at time t‘ = O contains other effects
which sxe spurious for the present purpose, namely, those due to the
chordwise discontinue@ in displacement at the lesding edge of the flap
which must exist in this case.

The unsteady-lift (or manent) functions for abrupt flap displace-
ments can be obtained fran those due to oscillating displacements, which
are often calculated for use in flutter studies, by mean& of the relation
(see ref. 5)

(M)

.
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where F8

sinusoidal

is the real pert of

flap displacements,

~. A similar relation exists

mc~ m 3956 ‘:
.

the normalized unsteady-llft function for :

and k is a reduced frequency equal to ““”- :-

between the mments. .-

The following two examples indicate the,,-er in which the required --- :
functions may be obtained.

. .

For supersonic
cf experiences the

cf; end the rest of

Hence,

two-dimensional flow, a trailing=edge flap of chord. _ _ _~
same kl.ftsmd mcanentas if it were a winR with chord.. ..
the wing contributes no@@ng to

()~(s,~)=~kl~s

where kl(s) represents the unsteady-lift @ction

of-attack change, d inasmuch

l.%(%!$)

Similarly; if ~, 1(s) is the

angle-of-attack chsmge end--the

the lift and manent. “- -“~—--- .-
.- .-

for indicial angle- ..-3-:

*

(Ak)
●

unsteady—moment function for tiicial .- .. .
maments are taken about the leading edgeg ..-_ ~--

(A5)

where C~, the I-ift-curve slope, is the val~ with which kl(s) ~ .-. .. ._j

k(s) are nomnalized. ..- .—

For incompressibletwo4imensional flti “thenormalized complex lift
function for a trailing-edge flap Undergoing.,.oscillatory displac~ents bf “” AQ1=- -----
smpl.itude ~ ~ with frequency u can be obtained from those of the te@ns .

5:
of equation (22) of reference 15 which contain the prcduct @Z = H. The
following result is obtained in this manner:

. ..-

c.=-Ei~2:#-(:yw$ ]-2.’[*H++ :$] “-”-””

where C is a function of the
reference .15,end generally is

reduc~ frequency k which is defined in ,_r~
luwwn as the .~eodorsen function, end wb_re—- ___:-

.
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.

the functions T&, ~, end T21 are defined In reference 15 in tams
.

of a parameter c which in the notation of the present paper 1s ~ - 1;
thus,

q+= (E- l)~n. Cos-qg - 1)

~= pi-7+cos-% - 1)
}

(A15)

h the expression for CL the temns in the first bracket are s8so-

ciated with noncircuhtory flow, the others with circulato~ flow. Ih
each bracket the first term is due to the vertical dtspl.acementof the
flap; therefore, it is not pertinent to the presat purpose. (Only the
contribution of the potential ~ given in eq. (7) of ref. 15 is pertinent

here; the potential #H given by eq. (6) of ref. 15 is not pertinent.)

The desired normalized steady-lift function is, therefore, for unit down-

wash, that is, for

“

.
Thus, equatlm (A3)

where 5(s) is the

the continuous part

$= -1, where

yields

(A7)

(A8)

unit impulse (Dirac delta) function and kl,c(s) is

of the indicial-lift-responsefunction, which is the
part obtained &ectly fran the circulatory ~srt of the M& due to sirlus-
oidal vertical oscillations, namely, C(k), by using equation (A3).

similarly, the mcment about the qtier-chord point can be obtained

frcm eqyation (23) of

the terms containing

%=

reference 15 by setting a = - * end retaining only

131;therefore,

[

IT-54
1

g b + %4($2!‘%2V

This m-t is due entirely to potential effects. Again, the first term
end part of the secozxiare due to the chordtise discontinuiw and are
Spurious. The other two terms can be ~ressed in tezms of the functions
~ and Tlo used for the lift and a function Ta defined by

.

.
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●

Thus, Sgd.n for * = -1, this mmt functioii“beccaueB

Hence, by using equation (A5), the following
Qsjg):

m m 3956

(A9)

...- ___
.

--

. ,_--
.=

(All))

gresston is obtsdned for -----A-

—

The manner in which these functions cm. be used to calculate the
lift and moment responses to Iiravellaggusts by means of equations (Al)
and (A2) 1s illustrated in the text of t,~s paper for incanpressi.ble .=

two-a.ilnalsionalflti.
*—

—- ______.— .-

●
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